
Further Down the VM Spiral
Detection of full and partial emulation for

IA-32 virtual machines

Danny Quist dannyquist@gmail.com
Val Smith mvalsmith@gmail.com

Offensive Computing

http://www.offensivecomputing.net/

Presented at Defcon 14
Las Vegas Nevada, USA

August 4, 2006

Introduction

Generic detection of virtual machines is possible using a variety of methods. As we
outlined in our previous paper, there are several methods that are available using special
pseudo-privileged operations running in ring-3, or user mode. There were several
problems with this detection mechanism. First, in a fully emulated environment it was
possible to trick the local descriptor table (LDT) [1, 2] detection method into thinking it
was on raw hardware. Second, on multiprocessor systems, some of the existing methods
are inaccurate. We have developed further methods of detecting the presence of a virtual
environment. We will also present an amalgamated approach to determining signatures
for various virtual environments.

Obfuscation and Avoidance

Modern malware is getting more difficult to reverse engineer. There are many different
methods for the malware writer to prevent analysis of a particular piece of code. The
three methods employed by malware writers that are discussed here are obfuscation, anti-
debugging, and virtual machine detection.

Packing and Obfuscation

There are a variety of methods for obfuscating and/or compressing compiled binaries.
The goal of these methods is to prevent analysis or reverse engineering and to provide a
smaller disk footprint. Obscuring things like strings, the imports address table (IAT) and
function calls make understanding a binary much more difficult. Implementations of
these methods range from using the well-known UPX packers to the more advanced
engines like morphine, Shiva and Telock and several different pieces of malware even
use custom decoders. These methods work by implementing an algorithm which runs
over the original binary code and either compresses it, encodes it or both. A decoder stub
is then usually included somewhere in the binary and the entry point is reset to the
location of this stub. When the decoding routine completes it sends execution back to the
Original Entry Point of the binary.

A variety of techniques are available for bypassing these methods. In some cases un-
packers are available which restore the binary to a de-obfuscated state. In other cases
pure static analysis of the binary is performed and custom decoder stubs can be written if
the algorithm is two way (reversible). Finally in extreme cases of complex obfuscation
run time analysis is required in order to de-obfuscate the binary using techniques like
memory region dumping, emulation, etc. These scenarios have been well covered in other
areas.

Debugger Detection Methods

One of the goals of many types of malware is to avoid detection, and avoid analysis by
reverse engineering. There are several methods used by malware to detect the presence
of a debugger as well as techniques for bypassing these methods.

The first method is employed by using the thread execution block (TEB) debugging flag.
This is the same method used by the IsDebuggerPresent() windows API code. Sample C
code to look for this is as follows:

if (IsDebuggerPresent())
{
 printf("Debugger Present\n");
}
else
{
 printf("No debugger present\n");
}

The disassembly for the IsDebuggerPresent() reveals the following:

_IsDebuggerPresent@0:
7C812E03 mov eax,dword ptr fs:[00000018h]
7C812E09 mov eax,dword ptr [eax+30h]
7C812E0C movzx eax,byte ptr [eax+2]
7C812E10 ret

The effect of the call is to first load the TEB into a register at location fs:[00000018h].
The debug bit is then moved to the eax register which returns the value to the underlying
debugger call. To circumvent this sort of detection, the memory can be modified prior to
runtime analysis. Below is example code for modifying this memory:

void nonDebugHijack(void)
{
 // set the TEB to non-debug mode
 __asm
 {
 mov eax, dword ptr fs:[00000018h];
 mov eax, dword ptr [eax+30h];
 mov ebx, eax;
 add ebx, 2;
 mov eax, 0xFFFF0000;
 mov [ebx], eax;
 }

}

This effectively reverses the value of this check and will cause the debugger code to
continue on as if no debugging is present. The debugger will continue to function
normally, even if this value is toggled. Setting an IDA breakpoint on the
IsDebuggerPresent() API call is a good alternative as well. [8]

Another popular method of malware preventing debugger access to an executing piece of
code is to stimulate exceptions in the code. On some debuggers, such as the stock

configuration of IDA Pro, this will cause the execution to stop. Ilfak Gulinov has written
a module to help with the circumvention of these tricks. [7]

A final example is that some malware take constant checksums of their own image. If an
interrupt (int 3) or breakpoint is called the image changes and the checksum will fail. The
malware can then take action to avoid further analysis.

Virtual Machine Detection

Virtual machine detection is another growing field of development for malware
researchers. Analysts examine malware inside of virtualized environments in order to
protect the host system from infection. Snap shots of different stages of the malware are
frequently employed as well. Virtualization provides protection for the host but also
contains some risk due to the potential for detection. Since the Intel IA32 and IA64
platforms were not initially designed for virtualization [3] implementing them involves
handling many of the incompatible instructions. In order to accommodate virtualization,
any of the non-hardware virtual machines must emulate or translate these instructions.
There are several well-known methods for detecting this virtualization.

Basic Detection Methods

Often malware will employ very simple techniques for detecting vmware, such as:

• Searching the registry for vmware related strings
• Searching the services table for vmware strings
• Walking the process table and detecting vmware related processes

Native API Detection Methods

The first native API detection method is to use special IO port communication methods
unique to the VMWare line of virtual machines. This can be demonstrated in the
following code:

__try
{
 __asm
 {
 mov eax, 'VMXh'
 mov ebx, 0; // any value but not the MAGIC VALUE
 mov ecx, 0xA // get VMWare version
 mov edx, 'VX' // port number

 in eax, dx; // read port
 cmp ebx, 'VMXh' // is it a reply from VMWare?
 jne notVmware
 jmp isVmware
 notVmware:
 mov rc, 0
 jmp done

 isVmware:
 mov rc, eax // on return EAX returns the version
 done:
 }
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
 rc = 0;
}

This illustrates the usage of the proprietary VMWare protocol. This method will
consistently return correctly provided Vmware is present on the local machine. The
protocol for VMWare has been reverse engineered. []A similar method exists for
detecting Microsoft’s Virtual PC:

__try
{
 __asm
 {
 mov ebx, 0; // It will stay ZERO if VPC is running
 mov eax, 1; // VPC function number

 // call VPC
 __emit 0Fh;
 __emit 3Fh;
 __emit 07h;
 __emit 0Bh;

 test ebx, ebx;
 setz [rc];
 }
}
__except(IsInsideVPC_exceptionFilter(GetExceptionInformation()))
{
 rc = 0;
}

Generic Detection Methods

As was demonstrated by two other methods via redpill [4] and scoopy_doo [2], it is
possible to detect the presence of a virtual machine generically. These are a simple low-
cost technique which checks for a simple signature. In our previous paper we
demonstrated that the accuracy of these methods is suspect on parallel machines unless
using the Local Descriptor Table LDT method. [1]

Furthering Generic Detection

Problems with the Local Descriptor Table

After releasing our previous paper, it was pointed out to us that the virtual machine
detection mechanism could be subverted in VMWare by disabling acceleration. This has
the effect of turning the virtual machine from a partially emulated environment to a fully
emulated instruction set. This has the effect of removing the possible signature method
used by the local descriptor table method, as the LDT value then mimics actual hardware.

The IDT problems on SMP machines discussed in our previous paper [1] still manifest
themselves using the fully emulated environment. Given the work of J.S. Robin [3] we
set out to find other ways to overcome this problem. The other virtualization problems
mentioned in the Usenix paper were a starting ground for this. Given the need for
instruction level virtualization, the IDT, LDT, and GDT methods did not have consistent
results. Without entering the kernel space, it did not appear possible to detect an
emulated environment.

Testing Methodology

The Usenix virtualization problem [3] highlights the issues with implementing a virtual
machine on the Intel architecture. We took the steps to narrow down a method to detect
the fully virtualized (fully emulated or accelerated) instruction sets. There were three
tests we performed on the software.

The first was to run nopill tool [1] on raw un-emulated hardware. This test was
performed on Intel and AMD hardware, in configurations up to four processors. The next
step was to test this using the VMWare tool with acceleration turned on. This method
has VMWare emulate the Intel instructions which cause problems for virtualization.
Virtual PC falls in the category of only allowing a partially emulated virtualization
format. The last method was to test with VMWare with acceleration turned off. This
causes VMWare to fully emulate all the instructions.

We tested each of these environments with all of the instructions mentioned in the Usenix
overview and found that the machine status word (MSW) yielded useful results.

The Machine Status Word Test

Given the three environments we noticed the following outcomes. First, the IDT, GDT
and LDT values follow the previously discussed results. The machine status word
(MSW) turned out to be the key for detecting changes in the fully vs. partially emulated
environment. There is no demonstrable change in the MSW on raw hardware vs.
partially emulated hardware. When running on fully emulated hardware, the value of the
MSW differs. This allows us to close the gap in detecting virtualization.

Figure 1: Decision flow for determining virtualization

Conclusion and Future Work

Using this method it is possible to fully detect without flaw the presence of a virtual
machine. Given the low cost of this decision point, these are a vector for a piece of
malicious software to determine its root operating environment. Some of these problems
may not be able to be solved by the various virtualization products. We suspect that the
MSW issue is one possible avenue that could be fixed. In practice, however, supporting
malicious software research has not been a strong market for the virtualization vendors.

Since this work is all based upon detection at the user level (ring-3), there exists the
possibility that many of the privileged operations could yield interesting results in kernel
space (ring-0).

References

1. “Generically detecting the Presence of Virtualization”, D. Quist, V. Smith
http://www.offensivecomputing.net//files/active/0/vm.pdf

2. Scoopy_doo, T. Kline
http://www.trapkit.de/research/vmm/scoopydoo/index.html

3. “Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Machine
Monitor”, Proceedings of the 9th USENIX Security Symposium, J.S. Robin, C.E.
Irvine

4. “Red Pill: or how to detect VMM using (almost) one CPU instruction” J.
Rutkowska
http://www.invisiblethings.org/papers/redpill.html

5. Intel Developers Manual
http://www.intel.com/design/pentium4/manuals/index_new.htm

6. VMWare Product Description
http://www.vmware.com/products/ws/

7. Stealth Plugin, Ilfak Guilfanov
http://www.hexblog.com/2005/11/stealth_plugin_1.html

8. Simple Trick to Hide the IDA Debugger, Ilfak Guilfanov
http://www.hexblog.com/2005/11/simple_trick_to_hide_ida_debug.html

9. VMWare Backdoors, K. Kato
http://chitchat.at.infoseek.co.jp/vmware/backdoor.html

10. Detect if your program is running in a virtual machine, Lallous
http://www.codeproject.com/system/VmDetect.asp

