
  

  

  

  

  

  

  

  

  

  

Reverse Engineering Malicious Binaries 

 

Anthony S. Clark 

6/18/2004 

  



  

  
This paper will focus on some techniques that can prove useful in the process of reverse engineering malicious 

binaries. Covered in this paper will be two UNIX based examples of unidentified suspect files and one windows 

worm. While there are many other techniques and tools that can be used such as gdb, IDA pro, etc., the intent of this 

paper is to use examples to show the thought process involved in identifying malicious binaries.  
  
CASE 1 – HACKER PENETRATION OF A UNIX SYSTEM  

  
Through various means an organization becomes aware that a hacker has penetrated their systems. Sometimes this 
is in the form of intrusion detection alerts. Other times it may be through various outside sources. Whatever the 

notification method an investigation is launched. In this particular investigation during the forensics phase several 

unknown binaries were discovered and the reverse engineering process was begun in order to determine what the 
binaries were. This is useful in modeling an unauthorized intruder’s actions and tracing their movements.  
  
First a computer is configured with a clean operating system with a known baseline of files and configurations, then 

the computer is placed on a segregated network in order to prevent possible infections. Next the questionable files 

are moved by secure means (usually a cd) to the testing system. In this case we used a RedHat Linux 7.3 system. A 
listing of the files is as follows:  
  
system1|tester|1>ls -al total 346 drwxrwx---  2 tester 

tester    512 2004-06-26 19:54 . drwx--x---  6 tester 

tester    512 2004-06-26 19:35 .. -rwx--x---  1 tester 
tester  27984 2004-06-26 19:54 ...  
-rw-rw----  1 tester tester  20641 2004-06-26 13:19 n  
  
Often the first thing to do is to take an md5sum of the files for comparison later to other files that might be discovered 

as the investigation progresses.  
  
system1|tester|2> md5sum *  
1778c5355c003599bc2aa118195d258c  n  
  
Immediately noticeable is a “...” file in the listing. This file was not seen by the initial md5sum so the md5sum is rerun 

using the filename.  
  
system1|tester|3> md5sum ...  
dfdf10dfa4c576642baa00aee79c524e  ...  
  
This “...” file is of immediate interest because it’s named in such a way as to hide itself from a simple ls. It would also 

be inconspicuous to in-experienced people even if a ls -al is run. This is a classic sign of a hacker So this binary is 

selected first for analysis. First a "file" command is run to see what type of file it is:  
  
system1|tester|4> file ...  
...: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5, dynamically linked (uses shared 

libs), not stripped  
  
The results show that it is a binary file. A favorite first pass on any unknown binary is to run "strings". This is a simple 

check but it often gets an analyst 90% of the way to identifying the binary.  
  
system1|tester|4> strings ...  



[ ... some standard strings stripped … ] 
USAGE %s        <pid to capture>                 

or:  
not enough arguments p:f:  
blah, learn to read now 
running code42 

waiting for auth socket 

did not get the auth 
socket! changed 

saved uid to %d  
sendmsg  
user interrupt  
running code24 Finito  
no proc? using default code address 0x%.8x  
restoring original process state saving 

file descriptor numbers:  
                -p pid -f fuzz (4 for some apps)  
++++++++++++++++++++++++++++++++++++++++++++++ +        APPCAP application hijacker         + +        by IhaQueR 

'2002                    +  

ATTACHING to pid %d with fuzz %d injecting 

code42 into applications address space failed to 

change suid, continuing anyway... Auth socket 
%s found, sending new tty fd sent %d bytes 

[OK] waiting for SIGUSR2  
got SIGUSR2, application's tty now redirected 

Ooooown3d!, press CTRL-C to detach 
Detaching completely...stay on got SIGUSR2, 

restored application's tty  
  
The program looks fairly benign at the begging but right near the end is some very useful information. There is some 

usage information and what appears to be an author banner. Also the word Ooooown3d is hacker lingo for 

“compromised”. This information can help make a signature useful for web research. The banner string "APPCAP 
application hijacker" can be used in a web search to try to identify the binary.  
  
After entering the following url: http://www.google.com/search?hl=en&ie=UTF-8&q=APPCAP+application+hijacker  in 

a web browser we see that the second link says: appcap home   

... the following command line: root@host:/root/appcap> ./appcap 32142 +++++ APPCAP application 

hijacker + + by IhaQueR ...   
appcap.ihaquer.com/ - 6k - Cached - Similar pages  
  
Clicking on a link we get a full description of what the program does:  

APPCAP HOME  

• What is appcap?    

Appcap is a tricky application for x86 Linux which allows an user with enough power (usually the superuser) 
on a machine to attach and redirect standard input and output of any application to his actual tty.  

• Why use appcap?  
  



Appcap can help you to trace users, for example if you are running a multiuser machine and are suspicious 
that some of them may be doing nasty things using your machine. It is especially very useful for tracing and 

monitoring ssh and telnet sessions. Of course you need at least superuser privileges to do that! Note that the 

session originator will be suspended as long as you are attached to that session.  

Along with the banner we saw in the strings output:  
  
++++++++++++++++++++++++++++++++++++++++++++++  
+        APPCAP application hijacker         +  
+        by IhaQueR '2002                    +  
++++++++++++++++++++++++++++++++++++++++++++++  
  
At this point we can be fairly confident we know what the binary is and what it does. The tool is used for hijacking 

user sessions and would allow for jumping into ssh sessions to remote sites as well. Correlating this data with 
theories and network session data of the initial vector of penetration we can get a clearer picture of what happened 

and begin to build a model of the intruders actions.  
  
It would still be useful to do a full analysis looking at system calls and network packets but we will leave that for the 

next binary that we evaluate.  
  
SECOND BINARY  
  
The next file to look at is the "n". The “file” command came up with "ELF 32-bit LSB executable, Intel 80386, version 1 

(SYSV), for GNU/Linux 2.2.5, dynamically linked (uses shared libs), not stripped" so we are dealing with another 
binary. After performing another strings on it we are disappointed to see that there isn’t much to work with. The only 

lines that stand out as possible signatures are:  
  
Usage: %s start end <max threads> MEEP 

MEEP! IP!  
  
This file thankfully does not appear to be stripped. The strip command removes information which might be useful to 
us such as, the debug section, line number information, comments, file headers, symbol table, etc. This would make 

debugging much more difficult by reducing the amount of information we would have to work with. Sometimes an 

obfuscator such as UPX is used which make it even more difficult to analyze the software by changing the function 

names to UPX_XXXX etc.  
  
There are no conclusive hits after running various Google searches on those strings. This binary proves to be more 

difficult to identify. At this point we have to run the program and see if its output gives any clues.  
  
system1|tester|5>./n  
Usage: ./n start end <max threads>  
  
This output indicates that the binary might be some kind of multithreaded scanner. I decided to run it again using 

“strace” to see what calls it made and save the output by using “script”.  
  
system1|tester|6>script Script 
started, file is typescript 

system1|tester|6>strace ./n 

execve("./n", ["./n"], [/* 43 vars */]) = 0  
uname({sys="Linux", node="tester.tested.com", ...}) = 0  
brk(0)                                  = 0x804a000  
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75ea000  



[ … some standard strace sections stripped … ]  

open("/lib/tls/libc.so.6", O_RDONLY)    = 3  
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0PX\1\000"..., 512) = 512 fstat64(3, 

{st_mode=S_IFREG|0755, st_size=1567768, ...}) = 0  
old_mmap(NULL, 1275852, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xb74a0000  
old_mmap(0xb75d2000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x131000) =  
0xb75d2000  
old_mmap(0xb75d5000, 10188, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, - 
1, 0) = 0xb75d5000  
close(3)                                = 0  
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb749f000 

set_thread_area({entry_number:-1 -> 6, base_addr:0xb749f080, limit:1048575, seg_32bit:1, contents:0, 
read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0 munmap(0xb75d8000, 70325)               = 0  
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0  
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75e9000 

write(1, "Usage: ./n start end <max th"..., 39Usage: ./n start end <max threads>  
) = 39  
munmap(0xb75e9000, 4096)                = 0 

exit_group(1)                           = ? 
system1|tester|6> exit exit  
Script done, file is typescript  
  
All we really see here is an execve() on the program itself, a bunch of standard libc system calls and then it gives 

back the memory it used. There is an interesting usage line which might be a good signature. The command itself 

gave no output. So trying again this time putting in an IP range for the start and end arguments as well as 1 for the 
number of threads to use:  
  
system1|tester|8>script  
Script started, file is typescript  
system1|tester|7> strace ./n 127.0.0.1 127.0.0.1 1  
execve("./n", ["./n", "127.0.0.1", "127.0.0.1", "1"], [/* 43 vars */]) = 0  
uname({sys="Linux", node="tester.testing.com", ...}) = 0 brk(0)                                  

= 0x804a000  
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75ea000  
[ … some standard strace sections stripped … ]  

open("/lib/tls/libc.so.6", O_RDONLY)    = 3  
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0PX\1\000"..., 512) = 512 fstat64(3, 

{st_mode=S_IFREG|0755, st_size=1567768, ...}) = 0  
old_mmap(NULL, 1275852, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xb74a0000  
old_mmap(0xb75d2000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x131000) =  
0xb75d2000  
old_mmap(0xb75d5000, 10188, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, - 
1, 0) = 0xb75d5000  
close(3)                                = 0  
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb749f000 

set_thread_area({entry_number:-1 -> 6, base_addr:0xb749f080, limit:1048575, seg_32bit:1, contents:0, 
read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0 munmap(0xb75d8000, 70325)               

= 0 brk(0)                                  = 0x804a000 brk(0x806b000)                          = 0x806b000  
brk(0)                                  = 0x806b000  
gettimeofday({1087325210, 103213}, NULL) = 0 getpid()                                

= 11912  
open("/etc/resolv.conf", O_RDONLY)      = 3  
fstat64(3, {st_mode=S_IFREG|0644, st_size=125, ...}) = 0  



mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75e9000 
read(3, " # Default resolv.conf file"..., 4096) = 125 read(3, "", 4096)                       = 0  
close(3)                                = 0  
munmap(0xb75e9000, 4096)                = 0  
clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, 
child_tidptr=0xb749f0c8) = 11913 exit_group(0)  
  
This is a little more useful. We see here that it opens resolv.conf to do a DNS lookup as well as checking the time of 

day. (gettimeofday({1087325210, 103213}, NULL) = 0) and open("/etc/resolv.conf", O_RDONLY)      = 3. The 

command still gave no output even with the proper arguments.  
  
So its likely this does some kind of network calls. I decided to dig a little deeper with objdump. I left out most of the 
output because it is not valuable for this analysis and is rather lengthy.  
  
system1|tester|9>objdump -s n  
  
Contents of section .dynstr:  
 8048368 005f5f67 6d6f6e5f 73746172 745f5f00  .__gmon_start__.  
 8048378 6c696263 2e736f2e 36007072 696e7466  libc.so.6.printf  
 8048388 00736e70 72696e74 66006d65 6d637079  .snprintf.memcpy  
 8048398 00706d61 705f6765 74706f72 74007065  .pmap_getport.pe  
 80483a8 72726f72 005f5f63 78615f66 696e616c  rror.__cxa_final  
 80483b8 697a6500 616c6172 6d00696e 65745f61  ize.alarm.inet_a  
 80483c8 64647200 6e746f68 6c005f5f 64657265  ddr.ntohl.__dere  

 80483d8 67697374 65725f66 72616d65 5f696e66  gister_frame_inf  
 80483e8 6f007761 69740073 69676e61 6c006874  o.wait.signal.ht  
 80483f8 6f6e6c00 666f726b 00696e65 745f6e74  onl.fork.inet_nt  
 8048408 6f610067 6574686f 73746279 6e616d65  oa.gethostbyname  
8048418 0068746f 6e730065 78697400 61746f69  .htons.exit.atoi  

8048428 005f494f 5f737464 696e5f75 73656400  ._IO_stdin_used.  8048438 

5f5f6c69 62635f73 74617274 5f6d6169  __libc_start_mai  

 8048448 6e005f5f 72656769 73746572 5f667261  n.__register_fra  
 8048458 6d655f69 6e666f00 636c6f73 6500474c  me_info.close.GL  

8048468 4942435f 322e312e 3300474c 4942435f  IBC_2.1.3.GLIBC_  
 8048478 322e3000                             2.0.  
  
So there is a call to addr.ntohl and one to inet_ntoa.gethostbyname.htons.exit.atoi and both of these are network calls 
for resolving hostnames.  
  
In section Contents of section .rodata: we see:  
  
8048be0 55736167 653a2025 73207374 61727420  Usage: %s start  
 8048bf0 656e6420 3c6d6178 20746872 65616473  end <max threads  
 8048c00 3e0a004d 45455020 4d454550 21204950  >..MEEP MEEP! IP  

8048c10 210a0025 7300666f 726b0025 73202d20  !..%s.fork.%s -  8048c20 
25640a00 00000000 00000000 00000000  %d..............  
  
Note the "fork". This further supports the theory that this application “n” is multi-process as seen by the fork that 

happens here. The MEEP MEEP! IP might be useful in a web search. Later on in Contents of section .stabstr: we 

see:  
  
0a40 2e2e2f6c 696e7578 74687265 6164732f  ../linuxthreads/  

 0a50 73797364 6570732f 70746872 6561642f  sysdeps/pthread/  



 0a60 62697473 2f707468 72656164 74797065  bits/pthreadtype  
 0a70 732e6800 2e2e2f73 79736465 70732f75  s.h.../sysdeps/u  
 0a80 6e69782f 73797376 2f6c696e 75782f62  nix/sysv/linux/b  

0a90 6974732f 73636865 642e6800 5f5f7363  its/sched.h.__sc  
...etc.  
  
At this point I am convinced this is a multithreaded / forking application which does DNS lookups. What is the point of 
the program though? More objdump investigation is needed.  
  
system1|tester|10>objdump -x n  
  
This gives us a ton of information which we look through for anything useful. Partway down the output of objdump I 

start to see useful information:  
  
00000000 l    df *ABS*  00000000              nfs.c  
08048820 l       .text  00000000              gcc2_compiled.  
080485c0       F *UND*  00000007              ntohl@@GLIBC_2.0  
  
and then:  
  
08049c5c g     O .data  00000004              start_howarewe  
08049dc4 g     O .bss   00000004              sock  
08048a40 g     F .text  00000058              resolve  
08048620       F *UND*  00000007              htonl@@GLIBC_2.0  
08049dc8 g     O .bss   00000004              cnt  
08049c54 g     O .data  00000004              kiddies  
08048a98 g     F .text  000000b6              CheckRPC  
08048630       F *UND*  00000105              inet_ntoa@@GLIBC_2.0  
08048598 g     F .init  00000000              _init  
08049c60 g     O .data  00000004              end_howarewe  
  
This looks rather compelling. What we see here is that this program includes nfc.c which is probably some sort of 
NFS related function and that it has a function called howarewe() which opens a socket, resolves a hostname and 

then appears to probe RPC. This information points to the possibility of this being a multithreaded NFS scanner.  
  
At this point we have gotten all we can from objdump and we could go a couple of different ways. We could either run 

the program under a debugger and try to figure out more of what it does step by step or we could run it in such a way 
that we can sniff the network traffic and examine the packets. I opted for the network route because I believe that 

objdump got most of the info that we need from a debugging point of view.  
  
In this particular case I ran “ethereal” on the target and then ran the "n" program against it and examined the packets.  
  
system1|tester|11>./n 192.168.1.2 192.168.1.2 1  
  
Strangely enough the binary still gives no output even when run against a remote active host.  
  
I saw some packets coming from the attacking host:  
  
No.  Time    Source Destination      Protocol  Info 1   4.443368  192.168.1.1 

 192.168.1.2    NFS    V3 GETATTR Call, FH:0x4e1784c4 2  4.443847  192.168.1.2  192.168.1.1 
   NFS    V3 GETATTR Reply (Call In 128)  

  



So this looks like an NFS session. Looking deeper into the packets I see that the request packet is about 162 bytes every time 
I run it and the reply packet is about 154 bytes. The don't fragment flag is set and this packet is a UDP type packet. The 

source port is 795 and the destination port is 2049. It looks like its expecting NFS protocol version 3.   
  
Now we know that the program wants to do something with NFS. I decided to complement the “ethereal” data with some 

“tcpdump” data.  
  
system2|tester|1>tcpdump -s 0  
  
14:32:24.899195 attacker.testing.com.32820 > victim.testing.com.sunrpc: udp 56 (DF) 14:32:24.899283 
victim.testing.com.sunrpc > attacker.testing.com.32820: udp 28 (DF)  

  
So we see there that it is talking to SUNRPC probably the portmapper. I added a filter to “tcpdump” to be sure:  
  
system2|tester|2>tcpdump udp port < = 111  
  
4:32:24.899195 attacker.testing.com.32820 > victim.testing.com.sunrpc: udp 56 (DF) 14:32:24.899283 

victim.testing.com.sunrpc > attacker.testing.com.32820: udp 28 (DF)  

  
So it is talking UDP on source port 32820 and destination port 111.  
  
On the victim I decided to strace the portmapper and then rerun the program and see if anything happens.  
  
system2|tester|3>ps -ef |grep port  
rpc       3185     1  0 Jun07 ?        00:00:00 portmap  
  
system2|tester|4>strace -p 3185  
Process 3185 attached - interrupt to quit poll(  
  
It sat there for a moment and then when I ran the program from the attacking host:  
  
system1|tester|12>./n 192.168.1.2 192.168.1.2 1  
  
[{fd=3, events=POLLIN|POLLPRI|POLLRDNORM|POLLRDBAND, revents=POLLIN|POLLRDNORM}, {fd=4,  
events=POLLIN|POLLPRI|POLLRDNORM|POLLRDBAND}, {fd=-1}, {fd=-1}], 4, -1) = 1  
recvmsg(3, {msg_name(16)={sa_family=AF_INET, sin_port=htons(32820), sin_addr=inet_addr("192.168.1.1")},  
msg_iov(1)=[{"!h\213\20\0\0\0\0\0\0\0\2\0\1\206\240\0\0\0\2\0\0\0\3\0"..., 8800}], msg_controllen=24, msg_control=0x8050060,  
, msg_flags=0}, 0) = 56  
getpid()                                = 3185  
open("/etc/hosts.allow", O_RDONLY)      = 5 fstat64(5, 

{st_mode=S_IFREG|0444, st_size=947, ...}) = 0  
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75e9000 

read(5, "ftpd:\t\t\t127.0.0.1, 192.168.1.,"..., 4096) = 947 close(5)                                = 0  
munmap(0xb75e9000, 4096)                = 0  
sendmsg(3, {msg_name(16)={sa_family=AF_INET, sin_port=htons(32820), sin_addr=inet_addr("192.168.1.1")}, 
msg_iov(1)=[{"!h\213\20\0\0\0\1\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 28}], msg_controllen=24, msg_control=0x8050060, , 

msg_flags=0}, 0) = 28 poll(  
  
It definitely talked to the portmapper which check its wrappers in hosts.allow. Now it is pretty convincing that this application is 

some kind of NFS scanner. The next step was to run it against a host that was actually running NFS and see what happened. I 

configured the victim host to run NFS and started the test again.  
  



system1|tester|13> ./n 192.168.1.2 192.168.1.2 1  
192.168.1.2 - 2049  
  
Jackpot. The mysterious binary is a scanner for machines running NFS. It uses UDP probes to the portmapper on port 111 to 
determine if NFS is running and then the attacker can run “showmount –e” to determine what file systems are exported. The 

scanner is very fast and since many organizations that run protocols such as NFS and NIS have tons of RPC and port 111 

traffic, it is possible and likely that these probes would be lost in the noise and not picked up by an IDS.  
  
Google searches turned up nothing definitive on a scanner of this type. No information about the author was identified inside 
the utility so it is unknown who wrote it or where it can be found on the internet. Its possible that this was a custom coded tool 

by the attacker.   
  
http://www.honeynet.org/ is a great source for finding more information about hacker binaries. I searched honeynet to see if it 

had a record of this scanner using both the strings identified earlier as well as "SUNRPC", "port 111", "NFS" and the closest 
utility that could be found is “luckscan-a”. I downloaded and compiled this utility and compared it to "n" but they did not match 

up. At that point I ended the analysis of the "n" binary.  
  
CASE 2 WINDOWS WORM  

  
On April 13, 2004 Microsoft released security bulletin MS04-011 which outlined a serious problem with LSASS among other 

parts of windows which could lead to remote code execution and administrative privilege level compromise.  
  
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx  
  
On April 30, 2004 the W32.Sasser.Worm was first seen in the wild. This worm exploited the LSASS vulnerability.  
  
The antivirus companies typically do a good job of analyzing worms and viruses but they don't often provide a signature which 
can be easily used for intrusion detection or automatic blocking systems. It can be useful to perform an analysis in order to 

develop these signatures and to get a clearer picture of the threat.  
  
Sometimes acquiring live virus code can be challenging. There are several companies which offer virus code for a fee but in 

this case we found a system that was infected and segregated it.  
  
Since I had an infected machine I started from the network point of view. On a segregated network I put a sniffer (ethereal) on 
and watched for worm traffic.  
  
The worm sends a 62 byte packet with the following attributes:  
  
microsoft-ds SYN  
  
flags 0x0002 SYN  
  
window size 64512  
  
The Payload:  
  
00 04 75 8b 84 be 00 c0  a8 81 7e ee 08 00 45 00  ..u.....  ..~...E. 00 

30 26 34 40 00 80 06  8f f1 ac 1e 10 1a ac 1e  l0&4@...  ........ dc 4b 
07 3c 01 bd 0f fb  2c 6d 00 00 00 00 70 02  .K.<....  ,m....p.  
fc 00 fd 1a 00 00 02 04  05 b4 01 01 04 02        ........  ......  
  



Much of the packet changes each time but the last chunk is always re-occurring: 05 
b4 01 01 04 02  
  
The first part is constant as well:  
00 04 75 8b 84 be 00 c0  a8 81 7e ee 08 00 45 00  ..u.....  ..~...E.  
  
here is some timing between packets:  
  
8.690632 ms  
8.690976 ms  
8.691723 ms  
8.692742 ms  
  
The network connections are opened very quickly. Based on the packets the worm appeared to go after a totally random IP 

each time it opened a connection.  
  
At that point I had a good network signature. I decided to go deeper into the sasser worm.  
  
I nmapped the box using nmap -p 1-65535 to find all ports and the output is as follows:  
  
==============================FULL NMAP============================  
  
(The 65531 ports scanned but not shown below are in state: closed)  
Port       State       Service  
135/tcp    open        loc-srv  
139/tcp    open        netbios-ssn  
 [BAD!] --> 5554/tcp   open        unknown  
  
==============================PORT PROBING============================ nc  
172.30.16.102 5554  
220 OK  
  
(nc is Netcat. Telnet could also be substituted for nc in some cases.)  
  
I decided to ftp to the infected host from a Linux box and send it a file.   
I then retrieved the same file and noticed it was different so I performed  md5sums and 

checked the sizes. I then compared the md5sum of what I got back  from the ftp server with 
that of the actual virus and they matched. No matter what filename you ask for from the ftp 

server you will get a copy of the virus with that name.  
  
echo test > test.txt md5sum 

test.txt  
d8e8fca2dc0f896fd7cb4cb0031ba249  test.txt ls 

-al test.txt  
-rw-r--r--    1 root     root            5 May  3 13:58 test.txt  
  
md5sum test.txt  
1fdb0075e5ed17d256bd88cbf79d1e23  test.txt  
ls -al test.txt  
-rw-r--r--    1 root     root        15870 May  3 13:59 test.txt  
  
 md5sum test.txt  



1a2c0e6130850f8fd9b9b5309413cd00  test.txt  
  
ls -al test.txt  
-rw-r--r--    1 root     root        15872 May  3 13:59 test.txt  
  
 md5sum virus.exe  
1a2c0e6130850f8fd9b9b5309413cd00  virus.exe  
  
C:\Documents and Settings\rasclark\Desktop>md5sum 30208_up.exe 1a2c0e6130850f8fd9b9b5309413cd00 
*30208_up.exe  
  
Then I started looking at the computer itself. Sysinternals (http://www.sysinternals.com/) makes a great tool called TCPVIEW 

which shows what ports are open on a box and what processes opened the ports.  
  
TCPVIEW reports a TON of listening ports attached to the process 30208_up.exe. 30208_up.exe is the initial virus file. These 

ports open and close consistently which correspond with the sniffer data about the outgoing port 445  packets every fraction 
of a second.  
  
30208_up.exe:464  TCP  nicole:4646  nicole:0 LISTENING    
30208_up.exe:464  TCP  nicole:4647  nicole:0 LISTENING    
30208_up.exe:464  TCP  nicole:4648  nicole:0 LISTENING    
30208_up.exe:464  TCP  nicole:4649  nicole:0 LISTENING    
30208_up.exe:464  TCP  nicole:4650  nicole:0 LISTENING    
30208_up.exe:464  TCP  nicole:4651  nicole:0 LISTENING    
30208_up.exe:464  TCP  nicole:4652  nicole:0 LISTENING    
  
The worm also puts randomly named files in c:\winnt\system32\ that is usually a 4 digit number like 7128_up.exe.  
  
Also in the TCPVIEW output under the lsass.exe running process every so often (about every 2 minutes) a cmd.exe process is 
opened as well as a ftp.exe process.  
  
Using another tool called autoruns, also from Sysinternals, I looked at what was setup to run automatically:  
  
==============================REGISTRY AUTORUNS============================  
  
[… Some standard autorun information stripped … ]  

+ D:\Program Files\Java\j2re1.4.2_01\bin\jusched.exe      D:\Program Files\Java\j2re1.4.2_01\bin\jusched.exe 
+ "D:\Program Files\QuickTime\qttask.exe" -atboottime   Apple Computer, Inc.  D:\Program Files\QuickTime\qttask.exe  
[BAD!] --> + C:\WINNT\avserve2.exe     C:\WINNT\avserve2.exe  

HKCU\Software\Microsoft\Windows\CurrentVersion\Run       
+ C:\WINNT\System32\ctfmon.exe  CTF Loader  Microsoft Corporation  C:\WINNT\system32\ctfmon.exe 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad        
+ PostBootReminder -> C:\WINNT\system32\shell32.dll Windows Shell Common Dll  Microsoft Corporation  

 C:\WINNT\system32\shell32.dll  
+ CDBurn -> C:\WINNT\system32\shell32.dll  Windows Shell Common Dll  Microsoft Corporation  

 C:\WINNT\system32\shell32.dll  
  
The avserve2.exe should not be there. A quick Google search showed this to be malicious. The good news is now we had the 

names of the virus binaries that we could reverse engineer. At this point we've gotten pretty far and could almost end the 

investigation here because everything we need to make a network based signature is available. Before doing that I decided to 
copy the virus binary to a Linux box for some further analysis.  
  



file 30208_up.exe  
30208_up.exe.dat: MS-DOS executable (EXE), OS/2 or MS Windows  
  
strings didn’t turn up any useful info.  
  
Objdump -p shows that the worm makes use of kernel32.dll.  
  
objdump -p 30208_up.exe  
  

  DLL Name: kernel32.dll         vma:  

Hint/Ord Member-Name Bound-To  
        9059        0  LoadLibraryA  
        9069        0  GetProcAddress  
        907b        0  VirtualAlloc  
        908b        0  VirtualFree  
  
objdump -g 30208_up.exe.dat  
30208_up.exe.dat:     file format efi-app-ia32  
objdump: 30208_up.exe.dat: no recognized debugging information  
  
Other objdump commands turned up nothing. This is a pretty clean binary. At the point the investigation was closed.  
  
CONCLUSION  

  
The various methods and techniques discussed in this paper have proven to be successful in identifying malicious binaries. 

The examples show a thought process and set of steps which aid in making the analysis process successful and efficient.  
 

 


